Tuesday, December 8, 2020

Distributions and Inequalities

Distributions-

o   Binomial distribution- Probabilities of the number of successes over a given number of trials-



o Normal Distribution- X is normal random variable (mean = µ, variance = σ2). PDF for the normal distribution.


o   Poisson Distribution- Average number of successes = ʎ, Poisson probability of k successes


o   Geometric distribution- Number of trials X it takes to get the first success has a geometric distribution.


o   Chi-Square Distribution- used for goodness of fit  and in CI estimation for a PSD (s) from SSD (s).

o   Cauchy distribution- µ and s2 are undefined. Mode and median are defined and equal to x0.

Location parameter can be mean, median or mode and Scale parameter can be variance, s etc.

o   Weibull Distribution- Lognormal distribution, change in parameter changes shape and in turn skewness.

o   Joint Distribution Function-


o   Marginal distributions- Distribution of each variable separately. If independent, than pxy(s,t) = px(s) * py(t).


o   Conditional Distribution and Expectation-

o   Inequalities-

a)      Jensen's Inequality- -

b)      Markov’s inequality- gives an upper bound of P such that +ve random variables ³ +ve constant.


c)      Tchebychev’s inequality- gives an upper bound of P such that -ve random variables ³ -ve constant.








No comments:

R3 chase - Pursuit

Change Point Detection Time Series

  Change Point Detection Methods Kernel Change Point Detection: Kernel change point detection method detects changes in the distribution of ...